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Collective surface modes in small spherical metallic systems 
within the Bloch-Jensen hydrodynamical model 
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Commissariat I'Energie Atomique, DRECAMISRSWI,, BStiment 462. Centre #Etudes de 
Saclay, 91191 Gif-sur-Yvette Cedex, France 

Received 29 June 1994. in final form 26 September 1994 

Abstract. An exact generalization of the classical Blach-lensen hydrodynamical model for 
the homogeneous freeelectron gas is oboined for a two-layer spherical metal system. The 
dispersion relation of surface plasmons together with the analytical expression of the self- 
consistent electric field are calculated exactly. It is found that small and large systems exhibit 
notably different behaviours. In particular, the surface-plasmon frequencies stmngly depend 
on the layer hihickness. As is the case for the metal-vacuum interface, the electric field is 
shown to present a sharp maximum at the interface between the two metals. A simple physical 
interpretation of this effeit is provided. The present two-layer system also gives interesting 
indications about the part played in collective surface modes by the ion-density profile ne% the 
surface of small metal clusters, which may be helpful ininterpretingrecent puuling experimental 
data. 

1. Introduction 

The interest in surface plasmons (SPS) has been recently revived, particularly in relation 
to fragmentation measurements of small metallic clusters. For instance, recent experiments 
have revealed that clusters of a small number of alkali atoms (less than 10)) are characterized 
by unexpected SP frequencies (De Heer 1993, Brahignac Pf al 1993). Moreover, SPs have 
been shown to exist even for systems involving very few atoms (five to 20) (Parks and 
McDonald 1989, Wang et al 1993, De Heer 1993). In this context, several questions have 
been raised. Some authors have discussed the influence of size effects or spill-out of the 
electron distribution at the surface on the SP frequencies (Xu and D i g "  1992, Lipparini 
and Pederiva 1993, Malov and Zartsky 1993, Brack 1993). However, to our knowledge, the 
role of ion-density inhomogeneity near the surface has not been clearly investigated, while 
it is expected to play a role, particularly for small systems such as small metal clusters. 
This issue is the main purpose of this paper. 

At a microscopic level, the full aeatment of an ion density gradient is an extremely 
difficult task. In this paper, we will use the following alternative macroscopic approach. 
To take inhomogeneous ion-density effects into consideration, a simple device consists in 
representing the surface region as a sequence of homogeneous layers of decreasing ion 
density (Boardman and Paranjape 1977, Boardman 1982). This method clearly amounts to 
solving the cumbersome problem of a metal bulk covered by a multiple-layer metal system. 
On the other hand, its advantage is that it enables us to represent each metal layer as a jellium, 
thus making the use of Bloch's hydrodynamical model (1933) for a homogeneous free- 
electron gas passible and deriving benefit from the exact solution for a single homogeneous 
medium obtained long ago by Jensen (1937). Obviously, the hydrodynamical model is 
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valid provided that the collective aspects of the electron gas prevail over the collisional 
ones. This condition will be fulfilled when the frequency of the collective oscillations is 
much higher than the electron-ion prude's inverse lifetime) and electron-electron collision 
frequencies. In general, for a medium to be correctly described as a collisionless plasma, 
i.e. to neglect electron-electron collisions, the mean free path e should be large compared 
with the wavelength A of the macroscopic self-consistent electric field. For free-electron 
metals, the Drude inverse lifetime, the electron-electron collision frequency and the 
plasma frequency up are, respectively, of the order of 1014 s-', 10'O s-' (Ashcroft and 
Mermin 1976) and 10l6 rad s-'. Also, we have e % V F / U ~ - ~  (where UF denotes the Fermi 
velocity), which is of the order of lo-* cm. Thus, SP modes having oscillation frequencies 
of the order of U,/& may be reasonably described within this model, provided appropriate 
conditions taking account of specific (kinetic) effects in the high-frequency regime are laid 
down (see below). This explains why the Bloch-Jensen hydrodynamical model has been 
successful for simple metals (Lundqvist 1983) in spite of its limitations. In addition, this 
approach has the advantage of analytical tractability. 

In this paper, we wish to show that an exact analytical generalization of Jensen's work 
can be built for a spherical metallic two-layer system, thus giving the exact dispersion 
relation of SPS modified by the presence of a thin metal layer. Our two-layer system will 
also give useful indications about the role played by the surfacedensity profile in simple 
metal clusters. Let us emphasize that this problem is not exactly equivalent to that of 
an inhomogeneous electron sphere such as considered long ago by Ruppin (1976) and by 
Boardman and Paranjape (1977), which is not truly a two-jellium system and which therefore 
requires different boundary conditions. Finally, our simple model will be proven useful to 
show an interesting effect: the existence of an interface plasmon at the metal-metal interface 
enhanced by the field of the SP. 

J Kuperszrych and M Raynaud 

2. The Eloch-Jensen hydrodynamical model for a two-layer system 

In the Bloch-Jensen hydrodynamical formalism, the collective oscillations of a homoge- 
neous electron gas are described by Poisson's equation 

V . E(r,  t )  = 47re[ni,. - n(r,  t ) ]  (1) 

the charge conservation equation 

an(r, t ) / a t  + V . [n(r, t)w(r, t ) ]  = 0 (2) 

and the fluid equation of motion 

av(r, t y a t  + f ~ v * ( r ,  t )  = -eE(r, t ) / m  - V P ( ~ ,  t ) /mn(r ,  t ) .  (3) 

In these equations, E is the self-consistent electric field, w the fluid velocity and P the 
kinetic pressure. nian and n denote respectively the ion and electron densities. 

In the case of a two-layer metal system described within the framework of a jellium 
model (electron densities are neutralized everywhere by uniform background ion densities) 
that consists of a spherical bulk (medium (I)) of radius R and electron density n a  overlaid 
by a foil (medium 0) of thickness h and electron density nhm, there are two electron- 
and ion-density singularities: one between the two metallic media and another between 
metal and vacuum. Now, it can be easily demonstrated (see the appendix) that the above 
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equations (1K3) still hold provided continuity of the normal (radial) component of the 
electron current is prescribed everywhere. Furthermore, since at the interface (r =~ R) 
between medium (I) and medium (II) we deal with two perfect conductors in interaction, 
the other boundary conditions include continuity of all the components of the electric field: 

(4) 

and continuity of all the components of the electron current (see the appendix): j ( r ,  f) = 
-en(r,  t)v(r, t )  

[E"(T ,  t ) l r = R  = [E")(rs t ) l r = R  

bo(", t ) l r = R  = b(')(r, t ) l r = R .  (5) 

At r = R f h, as in the Jensen case, we deal with the interface between a perfect 
conductor (medium (11)) and a perfect insulator (vacuum). The corresponding boundary 
conditions (Jackson 1976) are continuity of all the components of the electric field 

(6) vac) [E(')(T, f)]r-=R+h = [E( ("3 t ) l r = R + h  

and continuity of the sole radial component of the electron current (see the appendix) 

[jy)(rv t)lr.=R+h = 0. (7) 

3. The linear electron response 

The following theoretical treatment of ( 1 x 3 )  is standard inasmuch as we are only interested 
in the linear electron response. ( 1 ) - ( 3 )  are thus linearized by writing 

n(i)(r, t )  = n!) + n(i)(r)e-:*r 

with In(i)[ << n;), where i = I and II. As above mentioned, in the jellium model, the ion 
density is assumed to neutralize the electron density at equilibrium, that is, niii = n!'. By 
means of this procedure, (1)-(3) take the following form: 

v . E") (T) -4xe n (i) (8) 

- ion"'(r) + v . [no w (r)] = 0 

ion!)d)(r) = eno (i' E (i) ( r ) / m  + V P ( r ) / m .  

(9) 

(10) 

(i) (i) 

According to Bloch and Jensen, we take the kinetic pressure in the form 

p(i)(T) = mB(i)2nF)(T) 

where, for the hydrodynamical approach to be valid in the high-frequency regime, we have 
to assume (Pines 1964) j?") = f i u : ) ,  where U:) = ( 3 n z n 3 ' 4 2 / m  is the Fermi velocity 
of the electron gas. 

The above equations @)-(lo) will take a pmicularly simple form when introducing 
the scalar potential @(T) of the electric field [E(?-) = -V@(r)]. Thus, if k(') = 
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(02 - og)z)'/z/,9(i) where o$) = ( 4 1 r e ~ n ~ ' / m ) ~ / *  is the plasma frequency, they reduce 
to the following equations: 

J Kupersztych and M Raynaud 

[ A  +k( ' ) z ]A@( i ' (~ )  = 0 

for the material medium, and for vacuum 

ACJ"~'(T) = 0. 

In spherical coordinates, the general form c 
and Hilbert 1989) 

@(;)(T) = C f j 2 ( r ) y e m ( e ,  v )  
e m  

with 

he solution of (11) is known as (Courant 

In these equations, Yem@- q), j ,  and ye are, respectively, the surface harmonics of the fist 

and Fi; are subject to several constraints. These constraints include the requirement of 
no divergence of the potentials di) for r = 0 and @(vac) for r + CO together with the 
boundary conditions (4)-(7). Using the well known properties of the surface harmonics, 
these boundary conditions amount to expressing continuity of the functions & t ( r )  together 
with continuity of their derivatives at R and R + h, and also continuity of the following 
functions gFi(r) at R together with continuity of their derivatives at R and R + h, where 
the functions &(r) are defined as 

kind and the spherical Bessel functions. Now, the coefficients AfL, B::, Gem, C;,, De, (0 

The number of unknown coefficients determining the potentials @(I), Qm and Vac is 

number of equations is also ten (two for the condition of no divergence of the potential 
at r = 0, one for that at r -+ 03, four for continuity of the electric field and three for 
continuity of the electron current). Obviously, these equations are not linearly independent 
since (11) and (12) are linear and the potentials @ ( i )  determined up to a constant factor. 
Therefore, a non-trivial solution of the system is obtained, as usual, by expressing vanishing 
of its determinant, which yields the following rather complicated dispersion relation: 

ten: A:;, B E ,  Dj:, FJ!, A,,, a) B,, 0 Dtm,  a) F,, (U) C, and C;,. On the other hand, the 

XI + x 2  + x3 + x, +x5 = 0 (15) 
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4. Results and interpretation 

For the sake of simplicity, the numerical studies have been performed for the first harmonic 
case ( e  = 1, m = 0) (actually, as in the Jensen situation (one metallic medium), the case 
(1 = 0,m = 0) does not need to be considered since the potentials 0ci) reduce to a 
constant) for various freeelectron metal systems such as AI-Cu, Na-K and Cs-Rb. Similar 
tendencies have been observed in those systems and, in the present paper, we shall examine 
systematically the particular couple K-M, where M denotes a fictitious free-electron metal 
of density $r). As we shall see, the interest of this model is to enable us to give some 
comments on the role of ion- and electron-density inhomogeneities, 

J Kuperszrych and M Raymud 

m 

- =,&p/&) 

h(rl) 

0.0 2.0 4.0 6.0 8.0 2.5e+15 .O 

Figure 1. SP frequencies for the system KIM (upper curve) and for the system M I K  (lower 
curve) versus h for R = 10 A (M denotes a fictitious freeelectron metal of density and 
uLK) = 6.61 x loLs nd 5-’ (from Ashcron and M&n 1976)). 

In the computations, three typical values of the bulk radius, R = 10 A, 100 A and 
1000 A, together with various layer thickness h (up to 10 A) have been considered. A 
remarkable characteristic feature is the small range over which a rapid variation of the SP 
frequency w is obtained (cf figures 1-3). As can be seen, there exists a range of thickness 
where the SP frequency is strongly different from the classical values w ! ) / f i  and @)/A. 
Reversing the role of the two metals yields symmetrical behaviours. These features can 
be interpreted as typical size effects: for a simple (uncoated) system, the value of the SP 
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.O 

O(rad/s) 
4 . 0 ~ 1 5  

2.5-15 I 
0.0 2.0 4.0 6.0 8.0 1 

Figure 2. The same as figure I but for R = 100 A. 

frequency is not up/& but rather cop/& where CY < 3 and tends toward this value when 
ktsR --f ca. This result just stems from the original Crowell-Ritchie dispersion relation 
(15’). In this relation, the Bessel functions express the influence of opposite surfaces. When 
the size of the sphere is large enough (R >> k‘”-’), these influences play a negligible role and 
01 tends towards the asymptotic value CY = 3 as a consequence of the asymptotic behaviour 
of the Bessel functions. Now, for a coated sphere, two types of size effect need therefore 
to be considered (i) those connected with the size of the whole system (medium (I) plus 
medium (U)), which are of the same nature as those described For an uncoated system, and 
(ii) those connected with the layer thickness, which represent interactions between interfaces 
of a different kind (i.e. metal-metal and metal-vacuum). Hence, the values U$)/& (bulk 
regime) and @$/A (layer regime) appear as limit values: the bulk regime is defined when 
R/  h >> 1 and h << !dn)-l and the layer regime when h >> kc”)-’. 

As mentioned above, the present two-layer system’may also give useful indications about 
the part played for collective surface modes by the ion density profile near the surface of 
small metal clusters. Let us consider, for example, a linear ion density profile. As would be 
done in a numerical treatment of this problem, such a profile may be simulated by a sequence 
of small steps, each one being considered as  a homogeneous layer (see e.g. Boardman and 
Paranjape 1977, Boardman 1982). As a multiple-step analysis is beyond the scope of the 
present paper, we shall only consider here the influence of one single layer and we will 
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0 =&.$/JS) 

2 . 5 ~ 1 5  
1 6.0 8.0 0.0 2.0 4.0 .o 

Figure 3. The same as f i p  I but far R = 1000 A. 

simulate a linear ion density profile of the form no[l - ( R - r ) / h ]  with R < I < R f h ,  by a 
single-step profile of height 4.0 and of length h, as has been considered in figures 1-3. This 
approximation will be sufficient, however, for a qualitative estimate of the influence of an ion 
density gradient and an electron density gradient As is clearly exhibited in figures 1-3, the 
influence of the layer is to induce a red shift of the SP frequencies (see the remark below, 
however). It is interesting to note that this effect, which is a general tendency for free- 
electron metals and which was also noted by Ruppin (1976) and Boardman and Paranjape 
(1977), has been experimentally observed. However, it should also be emphasized that the 
applicability of the hydrodynamical approach in the cases of very sharp density profiles or 
surface diffuseness simulated by a very thin layer corresponding to a few atomic layers is 
certainly questionable, as is the validity of the jellium approximation. As shown above, 
this situation just tallies with the domain where the plasmon frequencies shift abruptly. A 
microscopic investigation (see e.g. Brack 1993) of this effect is therefore unavoidable and 
would complete the present macroscopic analysis, particularly for small systems such as 
metal clusters where singular effects have been recently revealed (BrBchignac et ~l 1993). 
Furthermore, it should be kept in mind that the present study only holds for simple metals 
and cannot be considered in the case of other metals such as transition metals (e.g. Ag) 
where blue shifts have actually been observed. For transition metals, interband transitions 
play an essential part that cannot be accounted for in a free-electron-gas model (Liebsch 
1993). 
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Er(a.u.) 
4.0 

-2.0 ' I 
90.0 100.0 110.0 120.0 130.0 

r ( 4  
Fignre 4. The radial component of the self-consistent elecvic field at I = 0 for K and R = 100 A 
versus r (the Jensen case). 

In figures 4 6  are reported (in arbitrary units) the amplitude variations of the radial part 
of the self-consistent electric field. For h = 0 (the uncoated metal case, see figure 4), the 
well known resonance electric field of the SP is represented and shows the usual spatial 
variations of the field amplitude inside the metal bulk and in vacuum. For h = 10 A 
(see figures 5 and 6) ,  the self-consistent electric field exhibits a strong enhancement at the 
metal-metal interface (at r = R = 100 A). This field is chmcterized by an amplitude 
much greater than that of the surface plasmon (at r = R + h = 110 A). It is important 
to emphasize that this interface plasmon has the same frequency as the surface plasmon 
since it is found by solving the dispersion relation (15). Actually, this new effect, which 
represents strong charge oscillations at the interface, admits a simple physical interpretation. 

By combining (8). (9) and (IO), we can easily rewrite the linearized Poisson equation 
in the following form: 

v . E(') = v . [ ( 4 s e 2 / m o 2 ) n ~ ' ~ ( ' )  + ( 4 i r e / m o 2 ) v ~ ( ' ) ( r ) l  

Neglecting the kinetic-pressure term between the square brackets (that is, neglecting 
any dissipation process), this equation becomes nothing else than 

V . D(') 0 (1% 

where 
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100.0 110.0 120.0 130.0 
-80.0 ' 

90.0 

Figure 5. The radial mmponent of the selfsonsisrent electric field at f = 0 for the system KIM 
and R = 100 8. versus r. 

is the electric displacement and 

= 1 - w;)2/w2 

is the plasma dielectric function for each medium (i). Now, (19) can also be rewritten as 

v . ~ ( 0  = -(ve(9). ,@i)/&(i). 

Taking (8) into account, this equation can finally be expressed in the form 

#) = - (e /mw2)(Vnt')  . E ( ~ ) ( W ) / E ( ' ) ( W )  

which shows that, at the metal-metal interface where the charge density varies abruptly from 
np to $), important charge Buctuations may occur, depending on whether there exists a 
radial component of the electric field at this place. This electric field can be just that of an 
SP existing at the edge of the metal layer. Provided the layer thickness is thin enough, the 
field of the SP tunnels into the metal-metal interface and so enhances the charge fluctuations 
at the same frequency as the SP. The magnitude of the enhanced field is then limited by 
thermal effects that are accounted for by the kinetic-pressure term (and by electron-electron 
collisions that are not considered here, however). 
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30.0 

20.0 

10.0 

0.0 

. 
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Figure 6. The same as figure 5 but for the system MIK. 

5. Conclusion 

In this paper, we have given an exact generalization of the Bloch-Jensen hydrodynamical 
model for freeelectron metals to a two-layer spherical system. This system has been 
proven useful to show that the ion density profile near the surface of a small metal cluster 
plays an important part inasmuch as it can result in significant shifts of the SP frequencies. 
This tendency would need to be corroborated by a microscopic analysis going beyond the 
jellium device together with further investigations involving a multiple-step formalism taking 
the exact ion density profile into consideration. Besides, we have taken advantage of the 
generalization to show an interesting effect: the existence of metal-metal interface plasmons 
enhanced by the SPS. This effect would also deserve to be investigated in planar geometry 
for which experiments are more easily feasible. Also, the consequences of electron-electron 
interactions should be weighed up as they are dissipative effects. In fact, their influence 
is probably to modify the above form of the kinetic pressure. We hope to answer these 
questions in a future paper. 
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Appendix 

We give here a demonstration of validity of (2), taking the surface discontinuities into 
account (for the fluid equation of motion and the Poisson equation, the proof is in fact 
trivial). 

J Kupersztych and M Raymud 

Figure Al.  A schematic representation of our notations. 

Let us consider a small volume VF) included between two spherical sheets located at 
Rj-l and R j  such that the electron density and velocity are respectively n('-l) and for 
r i Ri-1, di) and di) for Ri-1 c r e Rj and n('+I) and di+') for r Rj. The number of 
electrons in volume V(') at time t is then rvVa, n(j) dV, where dV is an element of volume. 
The variation per unit time of this number is a Jv(;) di) dV/at, which can be also obtained, 
as usual, by drawing up a balance between the number of incoming and outgoing electrons 
in V('). If S(') denotes the surface of the sphere of radius RI and N(') a normally oriented 
unit vector of this surface (see figure AI), n ( ' ) d i ) .  N(') represents the electron flow through 
the surface element dS of S('). We can thus write 

a j n(i) avlar = T, + T~ + T, + T4 (AI) 
VI0 

where 

T~ = - n ( i + l ) V ( i + U  . N(9@(-V(i+l) . " i ) )  dS 4 SI0 

n ( i ) V ( i )  . N(Q@(-V(i) . N(i))dS 
SQ) 

n(i)V(O . N(i-l)@(-V(i) . NO-I)) dS 

4 
4 sl1-l) 

To = - 

T4 = - 

where @ ( x )  is the Heaviside function and where the TI and T2 terms represent the incoming 
electron flow in V") and the T, and Tq terms the outgoing one. Now, on each surface S(j), we 
have a density discontinuity. If we impose continuity of the normal (here radial) component 
of the electron current density j = -env through S(') and S('-'), that is 

G" 8 )  . N(i)]se, = [ j ( i + l )  . N(i)lsr,, 
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and 

[jCO . ~ ( i - l ) ] ~ ~ , . , ~  = [j(i-1) , N(i-l)+> 

we can regroup in (Al) the TI and T2 terms and also the T3 and T4 ones, making use of 
the fact that the sign of di) . NF) is the same as that of j( j)  . N(') and using the relation 
O ( x )  + 0 ( - x )  = 1. Then, (Al) becomes 

(A21 

Now, as N('-')dS = -N(i)  (see figure 3),and using the Ostrogradsky theorem, (AZ) can 
be rewritten as 

dV/at = - n(i)w(i) . N") dS - n(i)w(f) . hT(i-1) dS. as VI;) $1,) # $(2-1> 

V . ( n ( i ) ~ ( i ) )  dV s as "(0 v(sq V(S+') )  
n("dV/at = - / V . (n%(i)) dV + 

where V(S(')) and V(S(i-l)) are the volumes of the spheres of radius Ri and Ri-,, 
respectively. Finally, as V(') = V(S")) - V(S(i-')), we have 

which leads to the familiar equation of continuity in medium ( i )  

adi)(v,  t ) p t  + v . [&I(?, t)di)(7, t ) ]  = 0. 

In summary, validity of the equation of continuity in medium 0) and 01) depends on the 
condition of continuity of the normal (radial) component of the electron current density at 
the metal-metal and metal-vacuum interfaces. It is worth noticing that continuity of the 
normal components of the electron current density j and of the electric field E ensures 
continuity of the n o d  component of the electric displacement D defined by the equation 

a o l a t  = aE/a t  + 4 ~ j  

which can be written in the present case as 

D = E  + (4ni lu~)i .  

The standard electrostatic boundary conditions (continuityof the potential and of the elechic 
displacement) are thus satisfied as a,special case. 
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